5,663 research outputs found

    Time-Staging Enhancement of Hybrid System Falsification

    Full text link
    Optimization-based falsification employs stochastic optimization algorithms to search for error input of hybrid systems. In this paper we introduce a simple idea to enhance falsification, namely time staging, that allows the time-causal structure of time-dependent signals to be exploited by the optimizers. Time staging consists of running a falsification solver multiple times, from one interval to another, incrementally constructing an input signal candidate. Our experiments show that time staging can dramatically increase performance in some realistic examples. We also present theoretical results that suggest the kinds of models and specifications for which time staging is likely to be effective

    Stability of exact force-free electrodynamic solutions and scattering from spacetime curvature

    Get PDF
    Recently, a family of exact force-free electrodynamic (FFE) solutions was given by Brennan, Gralla and Jacobson, which generalizes earlier solutions by Michel, Menon and Dermer, and other authors. These solutions have been proposed as useful models for describing the outer magnetosphere of conducting stars. As with any exact analytical solution that aspires to describe actual physical systems, it is vitally important that the solution possess the necessary stability. In this paper, we show via fully nonlinear numerical simulations that the aforementioned FFE solutions, despite being highly special in their properties, are nonetheless stable under small perturbations. Through this study, we also introduce a three-dimensional pseudospectral relativistic FFE code that achieves exponential convergence for smooth test cases, as well as two additional well-posed FFE evolution systems in the appendix that have desirable mathematical properties. Furthermore, we provide an explicit analysis that demonstrates how propagation along degenerate principal null directions of the spacetime curvature tensor simplifies scattering, thereby providing an intuitive understanding of why these exact solutions are tractable, i.e. why they are not backscattered by spacetime curvature.Comment: 33 pages, 21 figures; V2 updated to match published versio

    Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates

    Full text link
    A Bose-Einstein condensate confined in an optical dipole trap is used to generate long-term coherent memory for light, and storage times of more than one second are observed. Phase coherence of the condensate as well as controlled manipulations of elastic and inelastic atomic scattering processes are utilized to increase the storage fidelity by several orders of magnitude over previous schemes. The results have important applications for creation of long-distance quantum networks and for generation of entangled states of light and matter.Comment: published version of the pape
    • …
    corecore